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Abstract. To satisfy business requirements of various platforms and
devices, developers often need to migrate software code from one plat-
form to another. During this process, a key task is to figure out API
mappings between API libraries of the source and target platforms. Since
doing it manually is time-consuming and error-prone, several code-based
approaches have been proposed. However, they often have the issues of
availability on parallel code bases and time expense caused by static or
dynamic code analysis.

In this paper, we present a document-based approach to infer API
mappings. We first learn to understand the semantics of API names and
descriptions in API documents by a word embedding model. Then we
combine the word embeddings with a text similarity algorithm to com-
pute semantic similarities between APIs of the source and target API
libraries. Finally, we infer API mappings from the ranking results of API
similarities. Our approach is evaluated on API documents of JavaSE
and .NET . The results outperform the baseline model at precision@k
by 41.51% averagely. Compared with code-based work, our approach
avoids their issues and leverages easily acquired API documents to infer
API mappings effectively.
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1 Introduction

To support business requirements of different platforms or devices, software
developers often need to release several corresponding versions of their soft-
ware projects or products. Open source projects, like Lucene and JUnit, often
support different versions for Linux, Windows and Mac OS X. Then with the
development of mobile devices, application products also release versions corre-
sponding to iOS, Android and Windows Phone. Usually, developers often write
code under one platform first, then migrate them from the current platform
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(annotated as “the source platform”) to another (annotated as “the target plat-
form”). Compared with developing different versions independently, it is usually
more economical to make the migration shown in Fig. 1. Since the program-
ming languages used in the source and target platforms may be different, this
migration process is often called language migration or code migration.

Fig. 1. Migrating software projects from one platform to another platform

During the process of code migration, a key task is to figure out API map-
pings between API libraries of the source and target platforms [1,4,10]. Here API
mappings are defined as the mappings of APIs that belong to different libraries
but implement the same or similar functionality. Since modern software develop-
ment heavily relies on API libraries [9], code migration usually need to replace
APIs according to the knowledge of API mappings. For example, JavaSE is
the basic library for Java projects and .NET for C# projects. Then API map-
pings between the JavaSE library and the .NET library are important for the
migration process of software code from platforms supporting Java to platforms
supporting C#.

Since it is time-consuming and error-prone to discover API mappings manu-
ally [10], researchers proposed several code-based approaches to mine API map-
pings automatically. These approaches mostly built parallel code bases from
software projects’ different versions and took API calling information parsed by
static [4,7,8,10] or dynamic [1] code analysis to figure out API mappings. How-
ever, they have the issues that there may be no available corresponding versions
of software projects and it is usually slow to parse API calling information with
the static and dynamic code analysis.

In this paper, we propose a document-based approach to infer API mappings.
We find that API documents provide functional information of APIs in API names
and descriptions, which can be leveraged to infer APIs of the same or similar func-
tionality. Our assumption is that two APIs have the mapping relation if their
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names or descriptions express similar semantics in functionality. So our approach
tries to understand the semantics of API names and descriptions first by learning
embeddings of words in them. On this basis, we use a text similarity algorithm to
compute the semantic similarity of APIs and infer API mappings. Our experiments
on JavaSE and .NET libraries outperform the baseline model at precision@k
(1, 5, 10, 20) by 41.5% averagely. Compared with current code-based work, it is
easy to access API documents. Then the process of word embedding learning and
similarity computation is fast and effective to infer API mappings.

The rest of this paper is organized as follows: Sect. 2 introduces related work;
Sect. 3 illustrates our approach to infer API mappings from API documents;
Sect. 4 presents details of the dataset and the experiment results; Sect. 5 gives
the conclusion and discusses future work.

2 Related Work

The state-of-art work of discovering API mappings mostly takes code-based
approaches.

Zhong et al. [10] proposed the MAM model to mine API mappings from dif-
ferent versions of software client code. They first constructed API transformation
graphs (ATGs) based on aligned client code snippets, then leveraged heuristic
rules to infer API mappings between JavaSE and .NET libraries.

Gokhale et al. [1] developed a prototype tool named Rosetta to infer API
mappings between JavaME and Android libraries. They crawled mobile graphic
applications using the above two libraries and recorded the information parsed
by dynamic code analysis to mine API mappings.

Nguyen et al. [4,5] proposed the StaMiner model which takes the task of
discovering API mappings as a machine translation task. They also built parallel
code bases from different version of client code. Then they extracted API usage
sequences from source code with static analysis and applied the IBM translation
model to align API usages and infer API mappings.

After the work of StaMiner, Nguyen et al. [6] applied word2vec model on API
sequences extracted from Java and C# source code and proposed the API2VEC
model to learn APIs’ vector representations. Then based on API2VEC’s vectors
and a large amount of known API mappings between JavaSE and .NET , they
trained a transformation classifier (implemented as a multilayer perceptron) to
find API mappings.

In the above code-based approaches, MAM, Rosetta and StaMiner need the
alignment relations between method-level code snippets. These relations acquire
parallel code bases of different client versions which may be unavailable for parts
of projects. Then API2VEC needs a large amount of known API mappings. These
approaches also have the issue of high time expense caused by static or dynamic
code analysis.

Our work presents a document-based approach to infer API mappings on the
basis of understanding words in API documents. API documents are available
from official websites of API libraries. Compared with code analysis, it is fast
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to processing documents, learning word embeddings and ranking potential API
mappings via similarity in our approach. Also, our approach is unsupervised. It
can avoid issues of the above code-based approaches and be effective for any two
API libraries without available code bases.

3 Approach

3.1 Overview

In API documents, API names and their descriptions provide useful semantic
information of APIs’ functionality. Because API documents are originally pub-
lished to help developers understand what functions APIs have implemented. If
we could understand the semantics of API names and descriptions, it seems to
be feasible to infer API mappings based on their similarity.

Table 1 gives examples of API mappings between JavaSE and .NET from
the literature [4]. We can find that mapped APIs share words in their names
and descriptions, such as “io”, “exception”, “length” and “xml”. Besides the
same words in API names and descriptions, there are also words of relevant
semantics in them, such as “length” and “number”, “sequence” and “string”. So
we proposed the following approach to capture semantic relevance of API names
and descriptions based on word embeddings and evaluate API similarity to infer
API mappings.

Table 1. Examples of API mappings (left: JavaSE, right: .NET )

java.io.IOException System.IO.IOException

Exception Class

Signals that an I/O exception of some sort
has occurred

The exception that is thrown when an I/O
error occurs

java.lang.CharSequence.length System.String.Length

Methods Properties

Returns the length of this character sequence Gets the number of characters in the current
String object

org.w3c.dom System.Xml

Package Namespace

Provides the interfaces for the Document
Object Model (DOM) which is a component
API of the Java API for XML processing

The System.Xml namespaces contain types
for processing XML. Child namespaces
support serialization of XML documents or
streams, XSD schemas, XQuery 1.0 and
XPath 2.0, and LINQ to XML, which is an
in-memory XML programming interface that
enables easy modification of XML documents

Figure 2 shows the overview of our approach. We crawl raw documents of the
source and target libraries from their official website and use HTML parser to
extract names, descriptions and types of APIs as the preliminary corpus. Then
our approach uses the following four steps to infer API mappings:
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– We clean the preliminary corpus with text processing operations, which
mainly contain removing analphabetic characters, removing stopwords, split-
ting words and lowercasing. Specifically, we add a decomposition operation
of CamelCase words and package prefixes before lowercasing. This is to dense
the semantic space and capture semantic relevance implicated in shared or
similar words of API names and descriptions.

– Then we learn word embeddings so that we can capture semantic relevance
between words. Here we train a CBOW model [3] on the processed corpus of
the source and target libraries. We concatenate the name and description as
training sentences, then merge vocabularies of the source and target libraries
as one vocabulary.

– Before matching APIs based on the names and descriptions, we need to group
APIs based on their types. Because the API in the source library should
find candidates with the same type from the target library to avoid wrong
mappings and reduce time expense of computation. However, API types in
the source library are usually different from the ones in the target library (e.g.
“Package” and “Namespace”, “Methods” and “Properties” in Table 1). So in
this step, we transfer their API types into a unified list with a predefined
transfer map. Details are introduced in Sect. 4.1.

– Finally, for a given API in the source library, we take APIs of the same
(unified) type as its candidates. Then we compute and rank APIs’ semantic
similarity based on word embeddings and a text similarity algorithm. Based
on the ranking results, the top ones are inferred as potential API mappings.

Fig. 2. Overview of our approach
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3.2 Understanding API Documents

In this paper, we leverage the CBOW model to learn and represent the seman-
tics of words in API documents. The CBOW model is proposed by Mikolov [3]
to learn the language model from the natural language corpus. As shown in
Fig. 3, its basic idea is predicting the intermedia word wt through the previous
k words {wt−k, . . . , wt−1} and posterior k words {wt+1, . . . , wt+k} to capture
semantic relevance implicated in co-occurrence of words. Its training objective
is to maximize the following log-likelihood function:

1
T

T−k∑

t=k

log p(wt|wt−k, . . . , wt−1, wt+1, wt+k) (1)

Fig. 3. CBOW model of learning word embeddings

During the training process, we concatenate the name and description of each
API to sentences, and merge all the sentences of the source and target libraries
together as the training corpus. We expect that the learnt word embeddings by
the CBOW model can capture the shared semantics between words in documents
of the source and target libraries.

3.3 Computing Similarity Between APIs

On the basis of learnt word embeddings, we take a text similarity algorithm
proposed in the literature [2] to compute the similarity between APIs. Here one
concatenated sentence of the API name and description is treated as one bag-
of-words. The similarity of two APIs As and At is computed as the similarity of
two bag-of-words based on the word-to-word similarity, that is:

sim(As, At) = sim(As → At) + sim(At → As) (2)

The directed similarity sim(As → At) is computed by the weighted summation
of the similarity between words in As and the text At. The weights here use IDF
(Inverse Document Frequency,) values.

sim(As → At) =

∑
ws∈As

sim(ws, At) ∗ IDF (ws)∑
ws∈As

IDF (ws)
(3)
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As for the similarity sim(ws, At) between As’s word ws and the text At, it is
defined as the maximal similarity between word ws and all the words in At.

sim(ws, At) = max
wt∈At

sim(ws, wt) (4)

Then the key point of this algorithm is a reasonable measure of the similarity
between words. Here we use the cosine similarity between learnt embeddings of
words from Sect. 3.2, which is used widely in natural language processing tasks.

4 Evaluation

4.1 Dataset

We use the documents of JavaSE and .NET libraries to evaluate our approach.
The text processing operations have been introduced in Sect. 3.1. Here we present
details of transferring API types. Ideally, given an API As in the source library,
its matching candidate At in the target library should have the same type so
that mappings with mis-matched types will not be inferred. For example, APIs
of the “Package” type should not be matched with APIs of the “Class” type.
However, API types of different libraries are usually different, especially when
they support different programming languages. Thus we do statistics on API
types of JavaSE and .NET (the “Original” column in Table 3) and predefine a
transfer map of API types based on their definitions (Table 2). Finally we get 8
unified API types for these two libraries (the “Transfered” column in Table 3).

4.2 Experimental Settings

We use the Word2Vec module in gensim 0.13.31 to implement the CBOW model.
Its basic parameters are set as: embedding dimension = 128, the context win-
dow = 10 words, training epoch = 200. The training process of CBOW is fast

Table 2. The transfer map of API types

JavaSE .NET

Original types Transfered types Original types Transfered types

Annotation type Class Attached properties Method

Error Class Enumeration Enum

Exception Class Events Other

Nested classes Class Namespace Package

Enum constants Other Properties Method

Optional elements Other Attached events Other

Required elements Other Delegate Other

Operators Other

Structure Other

1 http://radimrehurek.com/gensim.

http://radimrehurek.com/gensim
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Table 3. Dataset information of JavaSE and .NET API documents

# Sample Original Filtered

49,150 44,762

JavaSE Grouped
by API
type

Original Transfered

Annotation type 78 Class 3,370

Class 2,261 Constructor 4,088

Constructors 4,088 Enum 71

Enum 71 Field 5,096

Enum constants 430 Interface 1,026

Error 33 Method 30,350

Exception 506 Package 197

Fields 5,096 Other 564

Interface 1,026

Methods 30,350

Nested classes 492

Optional elements 113

Package 197

Required elements 21

# Sample Original Filtered

366,772 366,609

.NET Grouped
by API
type

Original Transfered

Attached events 21 Class 9,005

Attached properties 80 Constructor 12,464

Class 9,005 Enum 1,645

Constructors 12,464 Field 5,332

Delegate 592 Interface 925

Enumeration 1,645 Method 306,887

Events 28,220 Package 95

Fields 5,332 Other 30,256

Interface 925

Methods 206,815

Namespace 95

Operators 1,127

Properties 99,992

Structure 296

which takes less than 30 min on the dataset of Table 3 in the Core i7 CPU. Then
the process of computing API similarity is also quick which outputs results aver-
agely for 5–10 given APIs per minute of the source libraries. The speed is related
to the number of candidate APIs with the same type in the target library.
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We use the one-hot model as the baseline. Each API is represented as a
vector, for which the dimension is the same as the vocabulary size. If the name
or description of the API contains the ith word of the vocabulary, then the value
at the ith position of the one-hot vector is 1, otherwise 0. API similarity in the
baseline is computed by the cosine similarity of one-hot vectors.

The standard test set comes from the literature [4]. After filtering meaningless
mappings like “@1”, we finally get 145 standard mappings from JavaSE to
.NET . The inferred API mappings is evaluated by precision@k. Given an API
As from the source library, if the standard mapped API As→t of the target
library is at the top-k results of inferred matched At, then we record it as one
hit at top-k. The final precision@k is the ratio of the hitting count at top-k to
the total number of test mappings.

4.3 Results

Table 4 shows precision@k (k = 1, 5, 10, 20) results of the baseline and our
work (embedding dimension = 128, the context window = 10 words, training
epoch = 200). It shows that our work outperforms the baseline at all the k-
values, which improves precision@k (1, 5, 10, 20) by 61.95%, 47.60%, 34.63%,
21.86% respectively. The average promotion is 41.51%.

Furthermore, we make groups of experiments to analysis the effect brought
by training parameters of word embeddings. First, we compare results with dif-
ferent embedding dimensions (Table 5). We find that precision@1 and preci-
sion@5 decrease distinctly with the growth of dimension from 128 to 256 then
to 512. It shows that 128 dimension is enough for the current corpus to avoid
over-fitting. Then we analyze results with different training epochs (Table 6).

Table 4. precision@k(%) of API migration

Model One-hot Our work

precision@1 14.48 23.45

precision@5 28.97 42.76

precision@10 35.86 48.28

precision@20 44.14 53.79

Table 5. precision@k(%) with different embedding dimensions

Dimension 128 256 512

precision@1 23.45 23.45 21.38

precision@5 42.76 40.00 40.00

precision@10 48.28 50.34 48.28

precision@20 53.79 53.79 53.79
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Table 6. precision@k(%) with different training epochs

Train iteration 200 300 400 500

precision@1 23.45 24.83 25.51 24.83

precision@5 42.76 43.45 42.76 41.38

precision@10 48.28 48.28 48.90 50.34

precision@20 53.79 52.41 53.10 53.79

These experiments use 128 dimension of embeddings. We find that the growth
of training epochs after 200 has little effect on the precision@k results.

Finally, we want to figure out the contribution of API names and descrip-
tions in the process of inferring API mappings. We concatenated the name and
description of an API as a sample in the above experiments. Here we try to
divide these two parts from the corpus. Table 7 shows the statistical information

Table 7. Corpus information of different types

API library JavaSE .NET

NAME DESC FULL NAME DESC FULL

MinLength 1 1 4 1 1 5

MaxLength 21 84 88 36 80 88

AvgLength 7.14 7.19 14.32 8.82 10.89 19.71

VocabSize 4,250 6,489 7,372 4,960 7,457 8,232

MergedVocabSize NAME: 6,882; DESC: 9,588; FULL: 11,019

Table 8. precision@k(%) with different kinds of corpus

Corpus Iteration precision@1 precision@5 precision@10 precision@20

NAME 200 20.69 32.41 38.62 44.83

300 20.00 35.17 40.00 45.52

400 20.69 31.72 41.37 45.52

500 21.38 34.48 39.21 45.52

DESC 200 7.59 16.55 20.69 28.97

300 7.59 14.49 19.31 28.28

400 7.59 15.86 20.69 26.80

500 7.59 15.17 17.24 28.97

FULL 200 23.45 42.76 48.28 53.79

300 24.83 43.45 48.28 52.41

400 25.51 42.76 48.90 53.10

500 24.83 41.38 40.34 53.79
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about different kinds of training corpus. “NAME” and “DESC” means use only
API names and only API descriptions respectively. “FULL” means the concate-
nated corpus of names and descriptions. Table 8 presents precision@k results
with different kinds of corpus. We can find that the results only using names is
better then the results only using descriptions, but both of them can not achieve
the results of concatenated corpus. It shows that the name part contributes
most semantics in the process of inferring API mappings and the description
part provides supplementary information for this process.

5 Conclusion

Software developers often need to release different versions of projects or prod-
ucts to support different platforms or devices. They usually migrate developed
code from one platform to another. API mappings provide the key knowledge
acquired in the process.

In this paper, we propose a document-based approach of understanding words
in API documents and computing API similarity to infer API mappings. Our
approach achieves averagely 41.51% improvement of precision@k (k = 1, 5, 10, 20)
to the baseline model. While existed code-based approaches may come across the
unavailability of parallel code and high time expense of code analysis, API doc-
uments is easy to access and our approach can infer API mappings more quickly
by learning word embedding and computing API similarity. Then our approach
only leverages weak-supervised knowledge of API types rather than strong super-
vision of method-level alignment on code or many known API mappings.

As for future work, we hope to measure similarity better with other algo-
rithms or other networks, such as recurrent neural networks or convolutional
neural networks. Then the available number of known API mappings for us is
too small to provide supervision knowledge. We expect to collect more available
API mappings and extend our approach by training supervised modules in the
future.
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